当前位置:首页>> 透过IGBT热计算来优化电源设计

透过IGBT热计算来优化电源设计

发布时间:2016-03-03作者:智汇张瑜

  大多数半导体组件结温的计算过程很多人都知道。通常情况下,外壳或接脚温度已知。量测裸片的功率耗散,并乘以裸片至封装的热阻(用theta或θ表示),以计算外壳至结点的温升。这种方法适用于所有单裸片封装,包括双极结晶体管(BJT)、MOSFET、二极管及晶闸管。但对多裸片绝缘栅双极晶体管(IGBT)而言,这种方法被证实不足以胜任。

  某些IGBT是单裸片组件,要么结合单片二极管作,要么不结合二极管;然而,大多数IGBT结合了联合封装的二极管。大多数制造商提供单个θ值,用于计算结点至外壳热阻抗。这是一种简化的裸片温度计算方法,会导致涉及到的两个结点温度分析不正确。对于多裸片组件而言,θ值通常不同,两个裸片的功率耗散也不同,各自要求单独计算。此外,每个裸片互相提供热能,故必须顾及到这种交互影响。

  本文将阐释怎样量测两个组件的功率耗散,使用IGBT及二极管的θ值计算平均结温及峰值结温。

透过IGBT热计算来优化电源设计

  图1:贴装在TO-247封装引线框上的IGBT及二极管。

  功率计算

  电压与电流波形必须相乘然后作积分运算以量测功率。虽然电压和电流简单相乘就可以给出瞬时功率,但无法使用这种方法简单地推导出平均功率,故使用了积分来将它转换为能量。然后,使用不同损耗的能量之和以计算波形的平均功率。

  在开始计算之前定义导通、导电及关闭损耗的边界很重要,因为如果波形的某些区域遗漏了或者是某些区域被重复了,它们可能会给量测结果带来误差。本文的分析中将使用10%这个点;然而,由于这是一种常见方法,也可以使用其他点,如5%或20%,只要它们适用于损耗的全部成分。

  正常情况下截取的是正在形成的正弦波的峰值波形。这就是峰值功率耗散。平均功率是峰值的50%(平均电压是峰值电压除以√2,平均电流是峰值电流除以√2)。

  一般而言,在电压波形的峰值,IGBT将导电,而二极管不导电。为了量测二极管损耗,要求像电机这样的无功负载,且需要捕获电流处于无功状态(如被馈送回电源)时的波形。

透过IGBT热计算来优化电源设计

  图2:IGBT导通波形。

  导通时,应当量测起于IC电平10%终于10% VCE点的损耗。这些电平等级相当标准,虽然这样说也有些主观性。如果需要的话,也可以使用其他点。无论选择何种电平来量测不同间隔,重要的是保持一致,使从不同 组件获取的数据能够根据相同的条件来比较。功率根据示波器波形来计算。由于它并非恒定不变,且要求平均功率,就必须计算电源波形的积分,如波形迹线的底部 所示,本案例中为674.3 μW(或焦耳)。

透过IGBT热计算来优化电源设计

  图3:IGBT关闭波形。

  与之类似,关闭损耗的量测如下图所示。

透过IGBT热计算来优化电源设计

  图4:IGBT导电损耗波形。

  导电损耗的量测方式类似。它们应当起于导通损耗终点,终于关闭损耗起点。这可能难于精确量测,因为导电损耗的时间刻度远大于开关损耗。

透过IGBT热计算来优化电源设计

  图5:二极管关闭波形。

  必须获取在开关周期的部分时段(此时电流为无功模式使二极管导电)时的二极管导通损耗资料。通常量测峰值、负及反向导电电流10%点的资料。

透过IGBT热计算来优化电源设计

  图6:二极管导电损耗波形。

  二极管导电损耗是计算IGBT封装总损耗所要求的最后一个损耗成分。当计算出所有损耗之后,它们需要应用于以工作模式时长为基础的总体波形。当增加并顾及到这些能量之后,它们可以一起相加,并乘以开关频率,以获得二极管及IGBT功率损耗。

  裸片温度计算

  为了精确计算封装中 两个裸片的温度,重要的是计算两个裸片之间的自身发热导致的热相互影响。这要求3个常数:IGBT的θ值、IGBT的θ值,以及裸片交互影响ψ(Psi)。某些制造商会公布封装的单个θ值,其中裸片温度仅为估计值,实际上精度可能差异极大。

  安森美半导体IGBT组件的数据表中包含IGBT及二极管θ值图表。稳态θ值如图7及图8中的图表所示。IGBT的θ值为0.470 °C/W,二极管为1.06 °C/W。计算中还要求另一项热系数,即两个裸片之间的热交互影响常数ψ。测试显示对于TO-247、TO-220及类似封装而言,此常数约为0.15 °C/W,下面的示例中将使用此常数。

透过IGBT热计算来优化电源设计

  图7:IGBT瞬时热阻抗。

透过IGBT热计算来优化电源设计

  图8:二极管瞬态热阻抗。

  IGBT裸片温度

透过IGBT热计算来优化电源设计

透过IGBT热计算来优化电源设计

  峰值裸片温度

  上述分析中计算的温度针对的是平均裸片温度。此温度在开关周期内不断变化,而峰值裸片温度可以使用图7和图8中的热瞬时曲线来计算。为了计算,有必要从曲线 中读取瞬时信息。如果交流电频率为60 Hz,半个周期就是时长就是8.3 ms。因此,使用8.3 ms时长内的50%占空比曲线,就可以计算Psi值:

  IGBT 0.36 °C/W

  二极管 0.70 °C/W

透过IGBT热计算来优化电源设计

  结论

  评估多裸片封装内的半导体裸片温度,在单裸片组件适用技术基础上,要求更多的分析技术。有必要获得两个裸片提供的直流及瞬时热信息,以计算裸片温度。还有必要量测两个组件的功率耗散,分析完整半正弦波范围抽的损耗。此分析将增强用户信心,即系统中的半导体组件将以安全可靠的温度工作,提供最优的系统性能。

公司简介

宜科(天津)电子有限公司是中国工业自动化的领军企业,于2003年在天津投资成立,销售和服务网络覆盖全国。作为中国本土工业自动化产品的提供商和智能制造解决方案的供应商,宜科在汽车、汽车零部件、工程机械、机器人、食品制药、印刷包装、纺织机械、物流设备、电子制造等诸多领域占据领先地位。宜科为智慧工厂的整体规划实施提供自系统层、控制层、网络层到执行层自上而下的全系列服务,产品及解决方案涵盖但不局限于云平台、MES制造执行系统、工业现场总线、工业以太网、工业无线通讯、机器人及智能设备组成的自动化生产线、自动化电气控制系统集成、智能物流仓储系统等,以实现真正智能化的生产制造,从而带来生产力和生产效率的大幅提升,以及对生产灵活性和生产复杂性的管理能力的大幅提升。多年来,宜科以创新的技术、卓越的解决方案和产品坚持不懈地为中国制造业的发展提供全面支持,并以出众的品质和令人信赖的可靠性、领先的技术成就、不懈的创新追求,在业界独树一帜。帮助中国制造业转型升级,加速智能制造进程,成为中国工业4.0智慧工厂解决方案当之无愧的践行者。

更多详情>>

联系我们

  • 联系人:章清涛
  • 热线:18611695135
  • 电话:
  • 传真:
  • 邮箱:18210150532@139.com

Copyright © 2015 ilinki.net Inc. All rights reserved. 智汇工业版权所有

电话:010-62314658 邮箱:service@ilinki.net

主办单位:智汇万联(北京)信息技术有限公司

京ICP备15030148号-1