当前位置:首页>> 运放组成的V/I和I/V变换电路TOP6设计详解

运放组成的V/I和I/V变换电路TOP6设计详解

发布时间:2016-03-06作者:智汇张瑜

  对交流电的电压和频率进行转变的电路。按其对电能变换的功能,可分为交流调压电路和变频电路。前者不改变交流电的频率,只改变其电压。按一定规律控制交流调压电路开关的通断,即可控制输出负载电压。交流调压电路的控制方式有周波控制、相位控制和斩波控制等3种方式。周波控制调压适用于负载热时间常数较大的电热控制系统。其缺点是在负载容量很大时,开关的通断引起对电网的冲击,从而引起电网电压闪变。相位控制调压适用于电动机速度控制或电热控制。其主要缺点是输出电压包含较多的谐波分量,当负载是电动机时,会使它产生脉动转矩和附加谐波损耗,还会引起电源电压畸变。为此,须在电源侧和负载侧分别加滤波网络。斩波调压电路输出电压质量较高,对电源影响也较小,主要缺点是元器件成本较高。

  1、 0-5V/0-10mA的V/I变换电路

  图1是由运放和阻容等元件组成的V/I变换电路,能将0-5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器。A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管  T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换。

  运放组成的V/I和I/V变换电路设计详解

  2、 0-10V/0-10mA的V/I变换电路

  图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端  Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4  /(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出:

  运放组成的V/I和I/V变换电路设计详解

  若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4,得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出。当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关。显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。

  运放组成的V/I和I/V变换电路设计详解

  3、 1-5V/4-20mA的V/I变换电路

  在图3中。输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即忽略反馈电流I2),使得IL≈I1,而运放A1满足VN≈Vp,如果电路图中  R1=R2=R,R4=R5=kR,则有如下表达式:

  

  由式①②③可推出:

  运放组成的V/I和I/V变换电路设计详解

  若Rf=62.5Ω,k=0.25,Vi=1-5V,则I1=4-20mA,而实际变换电流IL比I1小,相差I2(IL=I1-  I2),I2是一个随输入电压Vi变化的变量,输入电压最小时(Vi=1V),误差最大,在实际应用中,为了使误差降到最小,一般R1,R2,Rf的阻值分别选取40.25kΩ,40kΩ,62.5Ω。

  运放组成的V/I和I/V变换电路设计详解

  4、 0-10mA/0-5V的I/V变换电路

  在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,如图4,若精密电阻  R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中  R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。

  运放组成的V/I和I/V变换电路设计详解

  对于存在共模干扰的电流输入信号,可采用隔离变压器耦合方式,实现0-10mA/0-5V的I/V变换,一般变压器输出端的负载能力较低,在实际应用中还应在输出端接一个电压跟随器作为缓冲器。

  5、 由运放组成的0-10mA/0-5V的I/V变换电路

  在图5中,运放A1的放大倍数为A=(R1+Rf)/R1,若R1=100kΩ,Rf=150kΩ,则A=2.5;若R4=200Ω,对于  0-10mA的电流输入信号,将在R4上产生0-2V的电压信号,由A=2.5可知,0-10mA的输入电流对应0-5V的输出电压信号。

  运放组成的V/I和I/V变换电路设计详解

  图中电流输入信号Ii是从运放A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器。

  6、 4-20mA/0-5V的I/V变换电路

  经对图6电路分析,可知流过反馈电阻Rf的电流为(Vo-VN)/Rf与VN/R1+(VN-Vf)/R5相等,由此,可推出输出电压Vo的表达式:

  Vo=(1+Rf/R1+Rf/R5)×VN-(R4/R5)×Vf.由于VN≈Vp=Ii×R4,上式中的VN即可用Ii×R4替换,若  R4=200Ω,R1=18kΩ,Rf=7.14kΩ,R5=43kΩ,并调整Vf≈7.53V,输出电压Vo的表达式可写成如下的形式:

  运放组成的V/I和I/V变换电路设计详解

  当输入4-20mA电流信号时,对应输出0-5V的电压信号。

  运放组成的V/I和I/V变换电路设计详解

公司简介

宜科(天津)电子有限公司是中国工业自动化的领军企业,于2003年在天津投资成立,销售和服务网络覆盖全国。作为中国本土工业自动化产品的提供商和智能制造解决方案的供应商,宜科在汽车、汽车零部件、工程机械、机器人、食品制药、印刷包装、纺织机械、物流设备、电子制造等诸多领域占据领先地位。宜科为智慧工厂的整体规划实施提供自系统层、控制层、网络层到执行层自上而下的全系列服务,产品及解决方案涵盖但不局限于云平台、MES制造执行系统、工业现场总线、工业以太网、工业无线通讯、机器人及智能设备组成的自动化生产线、自动化电气控制系统集成、智能物流仓储系统等,以实现真正智能化的生产制造,从而带来生产力和生产效率的大幅提升,以及对生产灵活性和生产复杂性的管理能力的大幅提升。多年来,宜科以创新的技术、卓越的解决方案和产品坚持不懈地为中国制造业的发展提供全面支持,并以出众的品质和令人信赖的可靠性、领先的技术成就、不懈的创新追求,在业界独树一帜。帮助中国制造业转型升级,加速智能制造进程,成为中国工业4.0智慧工厂解决方案当之无愧的践行者。

更多详情>>

联系我们

  • 联系人:章清涛
  • 热线:18611695135
  • 电话:
  • 传真:
  • 邮箱:18210150532@139.com

Copyright © 2015 ilinki.net Inc. All rights reserved. 智汇工业版权所有

电话:010-62314658 邮箱:service@ilinki.net

主办单位:智汇万联(北京)信息技术有限公司

京ICP备15030148号-1