当前位置:首页>> 通过钻孔理论进行残余应力测量

通过钻孔理论进行残余应力测量

发布时间:2016-03-06作者:智汇小新

    残余应力 发生在任何机械结构中. 产生的原因,如焊接和塑性形变或材料的局部变形,材料表面的尖锐凹槽或者是敲击,或硬化等.

    残余应力和机械应力对于机械结构来讲都一样重要. 但是,与机械应力可以通过加载来进行计算不同,因此,残余应力需要采用可靠的方法进行测量,而不能对表面产生大的破坏.


    这也是钻孔理论产生的原因。通过在应变花的中心在材料表面钻个非常小的孔,通过检测在钻孔前后,应变花的变化,可以计算出残余应力的大小.


MTS 3000 系统包括:

一个光学-机械系统 (进行物理钻孔)

一个电子控制单元(控制光学-机械系统并通过HBM Spider8-30 放大器进行测量)

钻孔操作和控制软件 (进行自动钻孔)

后处理软件 (采用不同的评估理论来处理数据).

采用气涡轮进行钻孔,转速可达 400,000 RPM ,因此不会产生额外的残余应力.

后处理软件用来计算残余应力.


获得精确的应力状况,计算方法是非常重要的 许多研究者发表了很多钻孔理论计算应力的文献.

目前,在后处理软件中有三种计算方法: 均一应力理论, Kockelmann 理论和积分法 .


均一应力理论 [ASTM E 837-01标准]

    这种理论在 ASTM E 837-01 标准中进行了详细描述, 是基于样本表面应力不伴随距离变化的假设为基础的. 因此,不考虑空间解析度. 如果残余应力是均一的,这是最好的计算方法,并且对测试错误不敏感.


Kockelmann 理论


    Kockelmann 理论是建立在应变导数和应变分布存在相关性的理论基础上的,通过洞深度函数来表达. 通过一对系数(Kx and Ky), 通过仿真模型来进行计算.


通过应变值,以及摩尔圆来计算主应力和方向是可能的.


积分理论 


    此方法是有 G. S. Schajer 提出, 通过钻孔深度增加来进行残余应力分析. 采用这种方法,通过同步所有深度应力释放比其他方法有更高的空间分度.


    为了简化残余应力计算, Schajer 提出应力区可以通过 step-wise 函数描述,其通过孔深度是恒定的. 采用这种假说, Schajer 建立了计算的协同系数. 最大深度为应变花半径的 0.5 倍.


积分理论应当在随洞深度不同,应力有很大变化时使用,但其测试误差也有很到灵敏性.


最新! ASTM E837-08


    这是计算非均一残余应力的新标准. 积分法用于残余应力计算, Tikhonov 规则用于在使用大量的不同洞深度时来减少计算误差.


公司简介

宜科(天津)电子有限公司是中国工业自动化的领军企业,于2003年在天津投资成立,销售和服务网络覆盖全国。作为中国本土工业自动化产品的提供商和智能制造解决方案的供应商,宜科在汽车、汽车零部件、工程机械、机器人、食品制药、印刷包装、纺织机械、物流设备、电子制造等诸多领域占据领先地位。宜科为智慧工厂的整体规划实施提供自系统层、控制层、网络层到执行层自上而下的全系列服务,产品及解决方案涵盖但不局限于云平台、MES制造执行系统、工业现场总线、工业以太网、工业无线通讯、机器人及智能设备组成的自动化生产线、自动化电气控制系统集成、智能物流仓储系统等,以实现真正智能化的生产制造,从而带来生产力和生产效率的大幅提升,以及对生产灵活性和生产复杂性的管理能力的大幅提升。多年来,宜科以创新的技术、卓越的解决方案和产品坚持不懈地为中国制造业的发展提供全面支持,并以出众的品质和令人信赖的可靠性、领先的技术成就、不懈的创新追求,在业界独树一帜。帮助中国制造业转型升级,加速智能制造进程,成为中国工业4.0智慧工厂解决方案当之无愧的践行者。

更多详情>>

联系我们

  • 联系人:章清涛
  • 热线:18611695135
  • 电话:
  • 传真:
  • 邮箱:18210150532@139.com

Copyright © 2015 ilinki.net Inc. All rights reserved. 智汇工业版权所有

电话:010-62314658 邮箱:service@ilinki.net

主办单位:智汇万联(北京)信息技术有限公司

京ICP备15030148号-1