当前位置:首页>>工业大数据建设的终极目标是消除不确定性

工业大数据建设的终极目标是消除不确定性

发布时间:2017-03-20作者:智汇小蟹

在我看来,质量管理的一个重要思想,是将产品设计、质量要求、设备状态、工艺控制等看成概率问题。在这个思想的指导下,标准的制定普遍增加了对公差的指标要求。这样,就把质量管理聚焦到对不确定因素的度量和控制。

 

这个思想还意味着:偏差或者缺陷率小到规定的范围之后,就不再去追去它的原因了。“不去追究原因”其实常常是不得已而为之。在数据不完整的前提下,很多问题的原因根本无法去追究。

 

在钢铁生产过程中,连铸坯的质量缺陷就是一个典型。连铸坯缺陷一直是个很难控制的问题。对于用户要求比较高的产品,常常要全面清理。这样的代价是很大的。我们当然希望只清理有缺陷的产品。但由于坯子的表面很粗糙,很多缺陷不能在线准确检测。

 

于是,人们希望能够根据板坯生产的工艺参数,准确预测缺陷的产生。但很多缺陷只能在最终产品上、甚至用户使用时才能发现。在这个过程中,有些中间环节可能会把缺陷消除掉、有些虽然坯子有缺陷但在产品上显现不出来或者用户基本不在乎。而且,缺陷位置和当时的生产参数、设备状态也难以准确对应。这些都让我们无法将工艺参数和缺陷的产生对应起来。

 

这种现象的本质是:信息不足导致不确定性。信息不足的不确定性,导致分析结果的不确定性。分析结果的不确定性大到一定程度,分析结果根本无法用来创造价值。设想一种典型的情况:

 

某钢种缺陷发生率5%。我们把能拿到的数据都来建模。最终发现:在某种最严重的条件下,缺陷发生率8%;在最好的情况下,缺陷发生率3%。这就是一个无用的结果:对于质量要求高的产品,不论缺陷率8%还是3%,都要进行清理;对质量要求低的产品,不论8%还是3%,都不需要清理。

 

很多没有搞过数据分析的人,总希望模型精度非常高。但是,建模所依据的数据不完整、质量不高,就不可能得到高精度的预报结果——因为任何算法都不能让原始数据的信息量增加。极端的情况是:生产过程没有任何的检测和数据记录,数据分析能力再强也没有办法建立出理想的数学模型。还有一种特殊情况,数据基本完备但精度不够。这时,即便是完全正确的模型也只能预报一个概率分布——这个观念我强调了很多年,但真正能理解的人极少。

 

现在回到本文的开头:应该怎样建设工业大数据的基础。本人认为,理想的工业大数据就是针对特定问题(如板坯的质量缺陷),建立“全息”的数据映像。这时,根据已有的数据,是否发生特定问题是个确定性的。这或许是个永远都无法实现的理想,却是我们追求的方向。


公司简介

宜科(天津)电子有限公司是中国工业自动化的领军企业,于2003年在天津投资成立,销售和服务网络覆盖全国。作为中国本土工业自动化产品的提供商和智能制造解决方案的供应商,宜科在汽车、汽车零部件、工程机械、机器人、食品制药、印刷包装、纺织机械、物流设备、电子制造等诸多领域占据领先地位。宜科为智慧工厂的整体规划实施提供自系统层、控制层、网络层到执行层自上而下的全系列服务,产品及解决方案涵盖但不局限于云平台、MES制造执行系统、工业现场总线、工业以太网、工业无线通讯、机器人及智能设备组成的自动化生产线、自动化电气控制系统集成、智能物流仓储系统等,以实现真正智能化的生产制造,从而带来生产力和生产效率的大幅提升,以及对生产灵活性和生产复杂性的管理能力的大幅提升。多年来,宜科以创新的技术、卓越的解决方案和产品坚持不懈地为中国制造业的发展提供全面支持,并以出众的品质和令人信赖的可靠性、领先的技术成就、不懈的创新追求,在业界独树一帜。帮助中国制造业转型升级,加速智能制造进程,成为中国工业4.0智慧工厂解决方案当之无愧的践行者。

更多详情>>

联系我们

  • 联系人:章清涛
  • 热线:18611695135
  • 电话:
  • 传真:
  • 邮箱:18210150532@139.com

Copyright © 2015 ilinki.net Inc. All rights reserved. 智汇工业版权所有

电话:010-62314658 邮箱:service@ilinki.net

主办单位:智汇万联(北京)信息技术有限公司

京ICP备15030148号-1