新一代人工智能发展白皮书(2017)第二章

来源:CIE智库

点击:2590

A+ A-

所属频道:新闻中心

关键词:人工智能发展白皮书 工业化

      

        潘云鹤     中国工程院院士

     指导单位

        工业和信息化部信息化和软件服务业司

     

    指导委员会

        谢少锋    工信部信软司司长

        李冠宇    工信部信软司副司长

        徐晓兰    中国电子学会副理事长兼秘书长

        张宏图    中国电子学会总部党委书记兼副秘书长

        商    超    工信部信软司软件处处长

        傅永宝    工信部信软司软件处调研员

     

    专家委员会(排名不分先后,按姓氏笔画排序)

        王士进     科大讯飞研究院副院长

        韦    青     微软中国公司首席技术官

        宋    波     国安瑞(北京)科技有限公司总经理

        刘志坚     京东金融总法律顾问

        吴甘沙     驭势科技联合创始人兼CEO

        季向阳     清华大学自动化系教授

        陈丽娟     阿里巴巴人工智能实验室负责人

        梁家恩     云知声信息技术有限公司董事长兼CTO

        崔    岩     中德人工智能研究院院长

        蔡雄山     腾讯研究院法律研究中心副主任

     

    编写单位

          中国电子学会

     

    编写人员

          李    颋      周岷峰      马    良     凌    霞

          李    岩      张雅妮      许华磊     张    婵

          张    力      陈濛萌      樊江洋     朱    毅

          李俊平      阎德利      谢中业     陈    岩

    1、编制背景

    自1956年概念得以确立以来,人工智能发展至今已逾60年,随着所处信息环境和数据基础的深刻变革,开始迈进新一轮发展阶段,呈现出大数据、跨媒体、群体性、自主化、人机融合的发展新特征,从学术牵引式发展迅速转变为需求牵引式发展,相比历史上的任何时刻,都要更加接近于人类智能,既能为进一步掌握城市发展、生态保护、经济管理、金融风险等宏观系统提供指导,也能为设计制造、健康医疗、交通管理、能源节约等微观领域提供解决方案。我国正值工业化、城镇化、信息化、农业现代化的攻坚阶段,迫切需要加快推动人工智能在国民经济社会各行业、各领域的创新应用,促进产业提质增效,改善人民生活水平,切实解决经济运行的重大结构性失衡。针对于此,有必要研究编制新一代人工智能发展白皮书,明确人工智能在新时期、新形势下的技术框架、关键环节、应用前景,为推动人工智能关键技术进步和产业化应用推广提供措施建议,进一步推动我国智能相关的前沿新兴产业持续健康快速发展,有力支撑我国信息化和工业化深度融合迈上新台阶。

    2、编制目标

    (1)明确新一代人工智能的主要发展方向,系统归纳其主要驱动因素及最具典型意义的特征。

    (2)研究新一代人工智能的技术框架,梳理技术演进轨迹,提出基础性、通用性技术体系。

    (3)探索新一代人工智能的产业边界,划分产业类别和应用场景,研判相关的投融资特征及趋势。

    (4)提出促进新一代人工智能及相关技术及产业发展的可行性措施建议,为相关行业主管部门提供决策参考,为行业健康有序发展提供指导依据。

    3编制方法

    (1)研究学习国内外相关战略政策文件,充分借鉴参考国内外主要研究动态和成果。主要包括:美国白宫发布的《为人工智能的未来做好准备》、《国家人工智能研究与发展战略规划》;英国下议院科学和技术委员会发布的《机器人和人工智能》、英国政府科学办公室发布的《人工智能对未来决策的机会和影响》,以及英国政府在2017年1月宣布的《现代工业战略》和3月公布的《数字战略》;日本政府制定的《人工智能产业化路线图》;我国出台的《国务院关于积极推进“互联网+”行动的指导意见》和《“十三五”国家战略性新兴产业发展规划》中关于人工智能的部分。同时,针对欧盟的“人脑项目”、德国的“智慧数据项目”、日本的“超智能社会”和“高级综合智能平台计划”进行了学习了解。

    (2)访谈国内知名专家学者,围绕新一代人工智能的内涵、外延及特征趋势展开充分研讨。新一代人工智能既有创新性又有继承性,与过往所谈论的人工智能既有联系又有区别,在研究内容上既要有突破又要有充分吸收和借鉴。通过与国内人工智能相关领域的知名院士、高校学者、行业专家的座谈交流,尤其是围绕中国工程院潘云鹤院士《人工智能迈向2.0》一文进行的深入学习研讨,为白皮书的编制奠定了系统的理论基础。

    (3)调研国内外知名人工智能企业,汇集整理和分析来自实践应用的典型案例。高度重视人工智能领域的具体产品、服务及解决方案提供方式,走进国内外一批在技术或产业方面具备领先水平和特色优势的人工智能企业展开深度调研,并邀请部分企业的技术或战略负责人共同参与了白皮书的编制工作。

    4、特别声明

    (1)研究主题充分考虑了与国家规划的互动和呼应

    人工智能的概念从诞生之日开始计算,已经超过60年,并非横空出世的新兴事物。只不过受近年来算法模式持续优化、数据信息海量增长、运算力大幅提升的影响和带动,表现出了不同以往的发展水平和特征。本白皮书一开始研究主题名为“人工智能2.0”,目前已更改为“新一代人工智能”,是为了呼应院士研究文章、部委领导讲话,以及即将出台的国家级规划,重点针对人工智能的新趋势、新特征、新模式展开研究,并非是要提出一个全新的研究对象。

    (2)研究范围聚焦技术和产业发展

    在人工智能领域,正孕育着堪与相对论、量子理论、计算机、互联网相提并论的重大创新、变革及突破。人工智能历史性地站在了时代的风口,将对人类经济社会发展带来智能化浪潮的颠覆性猛烈冲击。研究人工智能,就要研究其在人类生产生活中的详细地位和作用,涉及到方方面面,包括了道德、法律、伦理、文化等领域。本白皮书的编制,主要是为了给相关行业主管部门和企业提供决策参考依据,集中在技术和产业两大层面展开研究,暂未涉及其他方面。

    (3)研究内容仍有待进一步丰富完善

    当前,各类研究咨询机构纷纷推出围绕人工智能主题的相关报告,各自观点既有一致性,也存在部分不同意见。本白皮书的主要观点和内容仅代表编制组在目前对人工智能的研判和思考,欢迎各方专家学者和企业代表提出宝贵意见,共同推动白皮书的及时更新和纠偏。同时,随着人工智能技术的进步、产业的发展、模式的变革,白皮书的内容将得到进一步丰富完善。

    第二章  新一代人工智能技术框架

    与早期人工智能相比,新一代人工智能正在全新信息环境、海量数据基础和持续演进、不断丰富的战略目标的引领下,依托于云计算、大数据两大基础平台和机器学习、模式识别和人机交互三大通用技术,以新型计算架构、通用人工智能和开源生态系统为主要导向,持续搭建和完善技术框架体系,不断逼近技术奇点,深刻变革人类生产生活。

    (一)新一代人工智能的技术演进

    1、从原有的CPU架构,转变为GPU并行运算架构

    深度学习算法运行于CPU架构的指令需求过于复杂。机器学习领域的泰斗杰弗里·辛顿开启了深度学习在人工智能领域研究的浪潮,大数据技术带来的数据洪流满足了深度学习算法对于训练数据量的要求,但是算法的实现还需要更快更强大的处理器予以支撑。传统的主流CPU架构如X86ARM等往往需要数百甚至上千条指令才能完成一个神经元的处理,对于并不需要太多的程序指令,却需要海量数据运算的深度学习的计算需求,并不能很好地匹配与适应。

    GPU架构具备与深度学习相匹配的并行运算能力。GPU(图形处理器)最初是个人电脑、工作站、游戏机和一些移动设备上运行绘图运算工作的微处理器,可以快速处理图像上的每一个像素点,其海量数据并行运算的能力与深度学习需求非常符合。当前主流的CPU只有4核或者8核,可以模拟出12个处理线程来进行运算,但是普通级别的GPU就包含了成百上千个处理单元,高端的甚至更多,这对于多媒体计算中大量的重复处理过程有着天生的优势。吴恩达教授领导的谷歌大脑研究工作结果表明,12颗英伟达(Nvidia)公司的GPU可以提供相当于2000颗CPU的深度学习性能,为技术的发展带来了实质性飞跃,被广泛应用于全球各大主流深度学习开发机构与研究院所。

    2、从单一算法驱动,转变为数据、运算力、算法复合驱动

    缺少数据支撑与运算力保证的算法驱动模式难以持续发展。人工智能发展以实现计算智能为重要研究方向,充分利用现代高性能计算机的快速计算和记忆存储能力,设计出神经计算、模糊计算和进化计算等求解算法,解决优化筛选、单点搜索、逻辑推理等实际应用问题。尽管深度学习概念和浅层学习算法已经被提出多年,但是一直进展缓慢,究其原因是缺乏海量的数据积累和与之相匹配的高水平计算能力,无法对算法模型进行持续的改进与优化,只停留在理论研究阶段,距离实际应用存在不小的差距。

    数据、运算力和算法复合驱动模式引发人工智能爆发式增长。与早期人工智能相比,新一代人工智能体现出数据、运算力和算法相互融合、优势互补的良好特点。数据方面,人类进入互联网时代后,数据技术高速发展,各类数据资源不断积累,为人工智能的训练学习过程奠定了良好的基础。运算力方面,摩尔定律仍在持续发挥效用,计算系统的硬件性能逐年提升,云计算、并行计算、网格计算等新型计算方式的出现拓展了现代计算机性能,获得更快的计算速度。算法方面,伴随着深度学习技术的不断成熟,运算模型日益优化,智能算法不断更新,提升了模型辨识解析的准确度。

    3、从封闭的单机系统,转变为快捷灵活的开源框架

    专家系统本地化特性限制了人工智能发展步伐。以往的人工智能专家系统是基于本地化专业知识进行设计开发,以知识库和推理机为中心而展开,推理机设计内容由不同的专家系统应用环境决定,单独设定模型函数与运算机制,一般不具备通用性。同时,知识库是开发者收集录入的专家分析模型与案例的资源集合,只能够在单机系统环境下使用且无法连接网络,升级更新较为不便。

    开源框架推动构建人工智能行业解决方案。人工智能系统的开发工具日益成熟,通用性较强且各具特色的开源框架不断涌现,如谷歌的TensorFlow、Facebook的Torchnet、百度的PaddlePaddle等,其共同特点均是基于Linux生态系统,具备分布式深度学习数据库和商业级即插即用功能,能够在GPU上较好地继承Hadoop和Spark架构,广泛支持Python、Java、Scala、R等流行开发语言,与硬件结合生成各种应用场景下的人工智能系统与解决方案。

    4、从学术研究探索导向,转变为快速迭代的实践应用导向

    学术导向难以满足复杂数据信息背景下的创新需求。随着人工智能的不断发展,分化产生了不同的学术流派,以符号主义、联结主义、进化主义、贝叶斯学派、类推学派等为典型。不同学派按照各自对人工智能领域基本理论、研究方法和技术路线的理解,以学术研究为目的进行探索实践,一定程度上推动了人工智能理论与技术的发展。在如今数据环境改变和信息环境变化的背景下,现实世界结构趋向复杂,单纯依靠课题立项和学术研究无法持续推动人工智能满足当前现实世界的模拟与互动需求,快速变化的应用环境也容易导致理论研究与实际应用相脱节,影响人工智能技术对经济发展和社会进步的积极拉动作用。

    快速迭代的实践应用导向加速形成技术发展正循环。目前,人工智能围绕医疗、金融、交通、教育、零售等数据较集中且质量较高的行业的实践需求,在算法模型、图像识别、自然语言处理等方面将持续出现迭代式的技术突破,在深度应用中支撑人工智能实现“数据-技术-产品-用户”的往复正循环,由学术驱动向应用拉动转化。在人工智能技术准备期,由于提供数据支撑较少,技术提升度慢,一旦进入应用期,大量的优质数据有助于分析技术弊端,通过对相关技术进行改进升级,提升了产品的应用水平,用户在得到更好的产品体验后,继续为应用平台创造了更大规模的后台数据,用来进行下一步的技术升级与产品改良,由此进入了大规模应用阶段。在技术快速迭代发展的过程中,数据累积和大规模应用起到了至关重要的作用,能够持续推动人工智能技术实现自我超越。

    (二)新一代人工智能技术体系

    新一代人工智能技术体系由基础技术平台和通用技术体系构成,其中基础技术平台包括云计算平台与大数据平台,通用技术体系包括机器学习、模式识别与人机交互。在此技术体系的基础上,人工智能技术不断创新发展,应用场景和典型产品不断涌现。

    1、云计算:基础的资源整合交互平台

    云计算主要共性技术包括虚拟化技术、分布式技术、计算管理技术、云平台技术和云安全技术,具备实现资源快速部署和服务获取、进行动态可伸缩扩展及供给、面向海量信息快速有序化处理、可靠性高、容错能力强等特点,为人工智能的发展提供了资源整合交互的基础平台。尤其与大数据技术结合,为当前受到最多关注的深度学习技术搭建了强大的存储和运算体系架构,促进了神经网络模型训练优化过程,显著提高语音、图片、文本等辨识对象的识别率。

    表1 云计算主要共性技术

    资料来源:中国电子学会整理

    2、大数据:提供丰富的分析、训练与应用资源

    大数据主要共性技术包括采集与预处理、存储与管理、计算模式与系统、分析与挖掘、可视化计算及隐私及安全等,具备数据规模不断扩大、种类繁多、产生速度快、处理能力要求高、时效性强、可靠性要求严格、价值大但密度较低等特点,为人工智能提供丰富的数据积累和价值规律,引发分析需求。同时,从跟踪静态数据到结合动态数据,可以推动人工智能根据客观环境变化进行相应的改变和适应,持续提高算法的准确性与可靠性。

    表2 大数据主要共性技术

    资料来源:中国电子学会整理

    3、机器学习:持续引导机器智能水平提升

    机器学习指通过数据和算法在机器上训练模型,并利用模型进行分析决策与行为预测的过程。机器学习技术体系主要包括监督学习和无监督学习,目前广泛应用在专家系统、认知模拟、数据挖掘、图像识别、故障诊断、自然语言理解、机器人和博弈等领域。机器学习作为人工智能最为重要的通用技术,未来将持续引导机器获取新的知识与技能,重新组织整合已有知识结构,有效提升机器智能化水平,不断完善机器服务决策能力。

    表3 机器学习主要共性技术

    资料来源:中国电子学会整理

    4、模式识别:从感知环境和行为到基于认知的决策

    模式识别是对各类目标信息进行处理分析,进而完成描述、辨认、分类和解释的过程。模式识别技术体系包括决策理论、句法分析和统计模式等,目前广泛应用在语音识别、指纹识别、人脸识别、手势识别、文字识别、遥感和医学诊断等领域。随着理论基础和实际应用研究范围的不断扩大,模式识别技术将与人工神经网络相结合,由目前单纯的环境感知进化为认知决策,同时量子计算技术也将用于未来模式识别研究工作,助力模式识别技术突破与应用领域拓展。

    表4 模式识别主要共性技术

    资料来源:中国电子学会整理

    5、人机交互:支撑实现人机物交叉融合与协同互动

    人机交互技术赋予机器通过输出或显示设备对外提供有关信息的能力,同时可以让用户通过输入设备向机器传输反馈信息达到交互目的。人机交互技术体系包括交互设计、可用性分析评估、多通道交互、群件、移动计算等,目前广泛应用在地理空间跟踪、动作识别、触觉交互、眼动跟踪、脑电波识别等领域。随着交互方式的不断丰富以及物联网技术的快速发展,未来肢体识别和生物识别技术将逐渐取代现有的触控和密码系统,人机融合将向人机物交叉融合进化发展,带来信息技术领域的深刻变革。

    表5 人机交互主要共性技术

    资料来源:中国电子学会整理

    (三)国内外技术对比分析

    1、发达国家基础平台布局完善,国内仍缺乏自主核心技术

    国外企业技术领先且大量布局公有云业务领域,大数据业务经验成熟、分工明确且数据开放程度较高。云计算方面,国外云计算企业基础技术相对领先,服务器虚拟化、网络技术(SDN)、存储技术、分布式计算、OS、开发语言和平台等核心技术基本上都掌握在少数国外公司手中,凭借着强大的创新和资本转化能力,有能力支持技术不断推陈出新。同时,国外企业在细分领域都有所布局,形成了完善的产业链配合,提供各种解决方案的集成,可以满足多场景使用要求。大数据方面,国外公司在大数据技术各个领域方面分工明确,有的专注于数据挖掘,有的专注于数据清洗,也有的专注于数据存储与管理。同时,国外从事大数据技术研发的企业有很大一部分是由传统的数据公司转型而来,如IBM、甲骨文(Oracle)、易安信(EMC,2015年10月被戴尔公司收购)等,这类公司在大数据概念兴起之前就早已充分接触数据领域业务,在数据科学领域有较强的研发能力。国外数据保护制度相对完善,数据开放标准成熟,为大数据技术研发提供了良好的外部环境。

    国内企业自主核心技术有待提高,数据开放程度偏低且缺乏必要的保护。云计算方面,国内虽然有阿里、华为、新华三、易华录等一批科技公司大力投入研发资源,但核心技术积累依然不足,难以主导产业链发展。大数据方面,国内企业仍处于“跟风”国外企业的发展阶段,在数据服务内核等方面缺乏积淀与经验,未能完全实现从IT领域向DT(数据技术)领域的转型。同时,国内数据应用环境相对封闭,政府公共数据开放程度较低,数据安全保护等级有待提高,数据安全风险评估制度与保障体系有待完善,对大数据技术的升级发展形成了一定的限制因素。

    2、发达国家在机器学习和人机交互领域具备先发优势,国内企业存在技术差距与人才短板

    国外机构发力机器学习主流开源框架,积极开发人机交互下一代新型技术。机器学习方面,目前较为流行的开源框架基本都为国外公司或机构所开发,例如TensorFlow、Torchnet、Caffe、DMTK、SystemML等,同时注重大数据、云计算等基础支撑信息技术对机器学习研究的促进作用,以及机器学习的应用实践,已进入研发稳定阶段。人机交互方面,国外技术企业基于触控技术、可穿戴设备、物联网和车联网的发展基础,正在积极开发性价比更高的下一代人机交互新型技术,以对现有产品进行升级并降低成本。

    国内机器学习基础理论体系尚不成熟,缺乏人机交互专业领域人才培养环境机器学习方面,尽管国内学者在数据挖掘层面取得了一定的研究成绩,但对于机器学习的底层技术、实现原理及应用方法缺乏足够的重视,导致关键技术环节缺失与重要领域边缘化,不利于在国际主流机器学习技术角逐中展开有效竞争。人机交互方面,研究者需要具备数学、计算机学和心理学等相关背景,复合型较强,相比于国外高校都设立单独的人机交互专业,国内高校开设的专业相对传统,缺乏交叉复合型人才的培养机制,亟需建立人机交互领域技术人才培养的良好环境。

    3、国内外模式识别研究水平基本处于同一起跑线,重点聚焦于语音识别与图像识别

    国内外研究领域基本一致,围绕前沿技术领域开展持续创新。目前,国内外企业均在围绕模式识别领域的基础理论、图像处理、计算机视觉以及语音信息处理展开集中研究,探索模式识别机理以及有效计算方法,为解决应用实践问题提供关键技术。国外科技公司在模式识别各领域拥有多年的技术积累,深入语音合成、生物认证分析、计算机视觉等前沿技术领域,具备原创性技术突破能力;国内企业在模式识别前沿技术研发方面与国外同行处于并跑状态,除百度、讯飞等行业龙头外,众多初创公司也加入了模式识别研究的技术与应用创新,催生了一批有创意的新型产品。

    语音识别和图像识别准确率明显提升,国内企业中文语音识别技术相对领先。国内外企业均致力于提高语音识别和图像识别准确率,谷歌和微软分别表示旗下的语音识别产品技术出错率已降至8%和6.3%,微软研究院开发的图像识别系统在世界著名的图片识别竞赛ImageNet中获得多个类别评比的第一名,为下一步的商业化应用奠定了良好基础。同时,国内企业重点突破中文语音识别技术,搜狗、百度和科大讯飞三家公司各自宣布旗下的中文语音产品识别准确率达到了97%,处于业内领先水平。

    (审核编辑: 智汇张瑜)

    声明:除特别说明之外,新闻内容及图片均来自网络及各大主流媒体。版权归原作者所有。如认为内容侵权,请联系我们删除。