顾 问
潘云鹤 中国工程院院士
指导单位
工业和信息化部信息化和软件服务业司
指导委员会
谢少锋 工信部信软司司长
李冠宇 工信部信软司副司长
徐晓兰 中国电子学会副理事长兼秘书长
张宏图 中国电子学会总部党委书记兼副秘书长
商 超 工信部信软司软件处处长
傅永宝 工信部信软司软件处调研员
专家委员会(排名不分先后,按姓氏笔画排序)
王士进 科大讯飞研究院副院长
韦 青 微软中国公司首席技术官
宋 波 国安瑞(北京)科技有限公司总经理
刘志坚 京东金融总法律顾问
吴甘沙 驭势科技联合创始人兼CEO
季向阳 清华大学自动化系教授
陈丽娟 阿里巴巴人工智能实验室负责人
梁家恩 云知声信息技术有限公司董事长兼CTO
崔 岩 中德人工智能研究院院长
蔡雄山 腾讯研究院法律研究中心副主任
编写单位
中国电子学会
编写人员
李 颋 周岷峰 马 良 凌 霞
李 岩 张雅妮 许华磊 张 婵
张 力 陈濛萌 樊江洋 朱 毅
李俊平 阎德利 谢中业 陈 岩
1、编制背景
自1956年概念得以确立以来,人工智能发展至今已逾60年,随着所处信息环境和数据基础的深刻变革,开始迈进新一轮发展阶段,呈现出大数据、跨媒体、群体性、自主化、人机融合的发展新特征,从学术牵引式发展迅速转变为需求牵引式发展,相比历史上的任何时刻,都要更加接近于人类智能,既能为进一步掌握城市发展、生态保护、经济管理、金融风险等宏观系统提供指导,也能为设计制造、健康医疗、交通管理、能源节约等微观领域提供解决方案。我国正值工业化、城镇化、信息化、农业现代化的攻坚阶段,迫切需要加快推动人工智能在国民经济社会各行业、各领域的创新应用,促进产业提质增效,改善人民生活水平,切实解决经济运行的重大结构性失衡。针对于此,有必要研究编制新一代人工智能发展白皮书,明确人工智能在新时期、新形势下的技术框架、关键环节、应用前景,为推动人工智能关键技术进步和产业化应用推广提供措施建议,进一步推动我国智能相关的前沿新兴产业持续健康快速发展,有力支撑我国信息化和工业化深度融合迈上新台阶。
2、编制目标
(1)明确新一代人工智能的主要发展方向,系统归纳其主要驱动因素及最具典型意义的特征。
(2)研究新一代人工智能的技术框架,梳理技术演进轨迹,提出基础性、通用性技术体系。
(3)探索新一代人工智能的产业边界,划分产业类别和应用场景,研判相关的投融资特征及趋势。
(4)提出促进新一代人工智能及相关技术及产业发展的可行性措施建议,为相关行业主管部门提供决策参考,为行业健康有序发展提供指导依据。
3、编制方法
(1)研究学习国内外相关战略政策文件,充分借鉴参考国内外主要研究动态和成果。主要包括:美国白宫发布的《为人工智能的未来做好准备》、《国家人工智能研究与发展战略规划》;英国下议院科学和技术委员会发布的《机器人和人工智能》、英国政府科学办公室发布的《人工智能对未来决策的机会和影响》,以及英国政府在2017年1月宣布的《现代工业战略》和3月公布的《数字战略》;日本政府制定的《人工智能产业化路线图》;我国出台的《国务院关于积极推进“互联网+”行动的指导意见》和《“十三五”国家战略性新兴产业发展规划》中关于人工智能的部分。同时,针对欧盟的“人脑项目”、德国的“智慧数据项目”、日本的“超智能社会”和“高级综合智能平台计划”进行了学习了解。
(2)访谈国内知名专家学者,围绕新一代人工智能的内涵、外延及特征趋势展开充分研讨。新一代人工智能既有创新性又有继承性,与过往所谈论的人工智能既有联系又有区别,在研究内容上既要有突破又要有充分吸收和借鉴。通过与国内人工智能相关领域的知名院士、高校学者、行业专家的座谈交流,尤其是围绕中国工程院潘云鹤院士《人工智能迈向2.0》一文进行的深入学习研讨,为白皮书的编制奠定了系统的理论基础。
(3)调研国内外知名人工智能企业,汇集整理和分析来自实践应用的典型案例。高度重视人工智能领域的具体产品、服务及解决方案提供方式,走进国内外一批在技术或产业方面具备领先水平和特色优势的人工智能企业展开深度调研,并邀请部分企业的技术或战略负责人共同参与了白皮书的编制工作。
4、特别声明
(1)研究主题充分考虑了与国家规划的互动和呼应
人工智能的概念从诞生之日开始计算,已经超过60年,并非横空出世的新兴事物。只不过受近年来算法模式持续优化、数据信息海量增长、运算力大幅提升的影响和带动,表现出了不同以往的发展水平和特征。本白皮书一开始研究主题名为“人工智能2.0”,目前已更改为“新一代人工智能”,是为了呼应院士研究文章、部委领导讲话,以及即将出台的国家级规划,重点针对人工智能的新趋势、新特征、新模式展开研究,并非是要提出一个全新的研究对象。
(2)研究范围聚焦技术和产业发展
在人工智能领域,正孕育着堪与相对论、量子理论、计算机、互联网相提并论的重大创新、变革及突破。人工智能历史性地站在了时代的风口,将对人类经济社会发展带来智能化浪潮的颠覆性猛烈冲击。研究人工智能,就要研究其在人类生产生活中的详细地位和作用,涉及到方方面面,包括了道德、法律、伦理、文化等领域。本白皮书的编制,主要是为了给相关行业主管部门和企业提供决策参考依据,集中在技术和产业两大层面展开研究,暂未涉及其他方面。
(3)研究内容仍有待进一步丰富完善
当前,各类研究咨询机构纷纷推出围绕人工智能主题的相关报告,各自观点既有一致性,也存在部分不同意见。本白皮书的主要观点和内容仅代表编制组在目前对人工智能的研判和思考,欢迎各方专家学者和企业代表提出宝贵意见,共同推动白皮书的及时更新和纠偏。同时,随着人工智能技术的进步、产业的发展、模式的变革,白皮书的内容将得到进一步丰富完善。
第四章 投融资特征及趋势
(一)全球人工智能领域融资总额持续增长但增速放缓
全球智能化浪潮的兴起,引发人工智能成为创业热点,各类风险投资纷纷占位人工智能各应用领域,跨国科技巨头则围绕自身人工智能战略,通过投资和并购方式布局产业生态,由此带来了人工智能领域融资热度持续增高。截止2017年末,全球人工智能公司已突破2075家,跨越25个子门类,融资金额高达65亿美元。但是,创业企业随着融资到位,助力产品、数据和商业模式的不断完善,已逐步成为细分领域的龙头企业或者独角兽企业,单项目融资金额规模正在逐步增大,同时随着市场集中度的增高,人工智能领域创业成功的几率有所下降,使得融资增速逐渐放缓。预计到2020年,全球人工智能融资金额增速会由2017年的33%下降至20%。
图10全球人工智能企业投融资金额总量(2015-2020年)
(二)国内人工智能投资规模有望出现V型反转且大额项目频发
在移动互联网、O2O等技术和商业模式的推动下,风险投资市场在2015年整体偏好高估值,当年国内人工智能投资总规模高达8.9亿美元。但随着风险投资市场的逐渐成熟,在经过近三年的爆发式投资及对高估值项目的推崇之后,国内风险投资生态系统正在走下融资高峰,逐步回归到正常、健康的投资环境。在经历了2016年的短暂低谷后,2017年国内人工智能投资金额再创新高,达到10.3亿美元。随着投资市场的沉淀,人工智能技术不断突破,商业模式持续创新,逐渐培育出了产品和应用具有相当规模的优质企业和项目。同时,创业企业随着规模增长,持续发展所需金额较大,在后续融资阶段吸收了大部分的风险基金,近期大额投资案例频发,投资热点主要集中在人工智能领域的技术层和应用层,如自然语言处理类的今日头条、智能搜索类的出门问问等,融资额均超过1.5亿美元。
图11 我国人工智能企业投融资金额总量(2015-2020年)
(三)深度学习、图像视频识别和文本识别是资本市场当前力捧的热点
深度学习、图像视频识别和文本识别应用范围较广,市场潜力巨大,率先成为资本竞相追逐的对象。深度学习算法成为推动人工智能发展的焦点,相继在图片识别、机器翻译、语音识别、决策助手、生物特征识别等领域实现了创新突破,截止2017年,全球深度学习领域在技术层和应用层的融资总额高达33亿美元。图像视频识别广泛应用于智能工业机器人、智能医疗、智能安防、智能驾驶等领域,全球共计融资总额高达16.6亿美元。文本识别则应用于智能投顾、智能客服、智能搜索、智能教育等领域,全球融资总额超过9.3亿美元。
表20 全球各领域人工智能企业融资额前五名
数据统计时间2010.1.1至2017.12.30
(四)全球科技巨头通过投资并购围绕人工智能构筑差异化竞争力
人工智能被全球巨头企业视为下一次技术革命的突破点,研发和投资并购同步发力并且侧重点各异。谷歌在研发方面依托人工智能改善搜索功能并开源机器学习系统,在投资方面通过收购Wavii、Moodstocks、SayNow等完成文本识别、图像视频识别、语音识别的技术布局,收购深度学习技术公司DeepMind完善开源平台能力,收购Kaggle扩大在开发者层面和人工智能开源平台方面的优势。苹果则集中在虚拟助手和深度学习平台的创业型小公司,购入Vocal IQ让Siri在虚拟助手领域取得领先,同时也收购了面向开发者和数据科学家的深度学习平台Turi。IBM重点围绕Watson平台的功能完善开展投资并购,收购Blekko丰富和深化Watson认知计算的能力,收购AlchemyAPI加强Watson人工智能与计算服务能力,收购Cognea增强Watson系统对话的能力。微软投资了Agolo和Bonsai公司,分别致力于布局开发先进摘要软件企业和部署智能系统。亚马逊通过收购语音识别公司Yap和语音助理公司Evi,构建了语音操作系统Alexa的雏形,并不断完善Alexa的应用能力,逐步整合智能家居语音控制系统。
表21 全球科技巨头主要收购企业
(审核编辑: 智汇张瑜)